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• The (re)rise of AI

• Securing AI

• Attackers and AI

• Defenders and AI



The impact of generative AI | 
The opportunity

Up to 

80%
of enterprises are 
working with or planning 
to leverage foundation 
models and adopt
generative AI1

Generative AI could 
raise global GDP by 

7% 
within 10 years2

Generative AI 
expected to represent

30% 
of overall market 
by 20253

The speed, 
scope, and scale 
of generative 
AI impact is 
unprecedented

Broad-reaching 
and deep impact

Critical focus 
of AI activity 
and investment

Massive early 
adoption



Artificial Intelligence (AI)
Human intelligence exhibited by machines

Machine Learning (ML)
Systems that learn from historical data

Deep Learning (DL)
ML technique that mimics 
human brain function

Foundation Model
Generative AI systems

Learning, reasoning, perceiving, and problem solving.

Discover patterns and generate corresponding outputs

Enable complex applications, like image and speech 
recognition.

Generate sequences of related data elements (for 
example, like a sentence).

1950’s 1980’s 2010’s 2020’s

…..



Efficiency with 
Generative AI

Time saving

Contextual insights

Ease of navigation

Recommended actions

Dynamic Updates

Collaborative effort

Learning/adaptability

Increased Accuracy 
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Bias

Agree Neutral Disagree

46%

Explainability Ethics

46%48%

There’s a broad spectrum of concerns with AI

believe decisions 
made by generative 
AI are not sufficiently 
explainable

concerned about 
the safety and 
ethical aspects of 
generative AI

believe that generative 
AI will propagate 
established biases

80% of surveyed business leaders have major concerns1

Trust

42%

believe generative 
AI cannot be trusted



Business is 
adopting AI

So are 
attackers

7

Security Talent Automation Finance

AI for Business

Adversarial AI

Marketing Regulations

Social 
engineering

Theft Phishing Malware Fakes Poison

Security for AI

Model, data, 
prompts access 
controls

Trust AI 
models, data, 
vendors

Model, Data 
Infrastructure 
protection

Privacy Controls 
and management

Threat monitoring and 
response

Secure design 
and engineering

Employee 
education

AI Security
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Attacker’s Use of AI in Security

• Generate: DeepHack tool learned 
SQL injection

• Automate: Generate targeted 
phishing attacks on Twitter 

• Refine: Neural network powered 
password crackers 

• Evade: Generative adversarial 
networks learn novel steganographic 
channels

AI Powered Attacks Attacking AI Theft of AI

• Poison: Microsoft Tay chatbot 
poisoning via Twitter (and Watson 
Urban Dictionary “poisoning”) 

• Evade: Real-world attacks on 
computer vision for facial recognition 
biometrics and autonomous vehicles

• Harden: Genetic algorithms and 
reinforcement learning (OpenAI Gym) 
to evade malware detectors

• Theft: Stealing machine learning 
models via public APIs 

• Transferability: Practical black-box 
attacks learn surrogate models for 
transfer attacks

• Privacy: Model inversion attacks 
steal training data

(a) (b) (c) (d)

Figure 4: Examples of successful impersonation and dodging attacks. Fig. (a) shows SA (top) and SB (bottom) dodging
against DNNB . Fig. (b)–(d) show impersonations. Impersonators carrying out the attack are shown in the top row and
corresponding impersonation targets in the bottom row. Fig. (b) shows SA impersonating Milla Jovovich (by Georges Biard
/ CC BY-SA / cropped from https://goo.gl/GlsWlC); (c) SB impersonating SC ; and (d) SC impersonating Carson Daly (by
Anthony Quintano / CC BY / cropped from https://goo.gl/VfnDct).

Figure 5: The eyeglass frames used by SC for dodging recog-
nition against DNNB .

postors) never occurs, while true acceptance remains high.
Following a similar procedure, we found that a threshold of
0.90 achieved a reasonable tradeo↵ between security and us-
ability for DNNC ; the true acceptance rate became 92.01%
and the false acceptance rate became 4e�3. Attempting
to decrease the false acceptance rate to 0 reduced the true
acceptance rate to 41.42%, making the FRS unusable.

Using thresholds changes the definition of successful im-
personation: to successfully impersonate the target t, the
probability assigned to ct must exceed the threshold. Eval-
uating the previous impersonation attempts under this def-
inition, we found that success rates generally decreased but
remained high enough for the impersonations to be consid-
ered a real threat (see Table 2). For example, SB ’s success
rate when attempting to fool DNNB and impersonate SC

decreased from 88.00% without threshold to 75.00% when
using a threshold.

Time Complexity The DNNs we use in this work are
large, e.g., the number of connections in DNNB , the small-
est DNN, is about 3.86e8. Thus, the main overhead when
solving the optimization problem via GD is computing the
derivatives of the DNNs with respect to the input images.
For NI images used in the optimizations and NC connec-
tions in the DNN, the time complexity of each GD iteration
is O(NI ⇤NC). In practice, when using about 30 images, one
iteration of GD on a MacBook Pro (equipped with 16GB of
memory and a 2.2GHz Intel i7 CPU) takes about 52.72 sec-
onds. Hence, running the optimization up to 300 iterations
may take about 4.39 hours.

6. EXTENSION TO BLACK-BOX MODELS
So far we have examined attacks where the adversary has

access to the model she is trying to deceive. In general,
previous work on fooling ML systems has assumed knowl-
edge of the architecture of the system (see Sec. 2). In this
section we demonstrate how similar attacks can be applied
in a black-box scenario. In such a scenario, the adversary
would typically have access only to an oracle O which out-
puts a result for a given input and allows a limited number of
queries. The threat model we consider here is one in which
the adversary has access only to the oracle.
We next briefly describe a commercial FRS that we use in

our experiments (Sec. 6.1), and then describe and evaluate
preliminary attempts to carry out impersonation attacks in
a black-box setting (Sec. 6.2–6.3).

6.1 Face++: A Commercial FRS
Face++ is a cross-platform commercial state-of-the-art

FRS that is widely used by applications for facial recog-
nition, detection, tracking, and analysis [46]. It has been
shown to achieve accuracy over 97.3% on LFW [8]. Face++
allows users to upload training images and labels and trains
an FRS that can be queried by applications. Given an im-
age, the output from Face++ is the top three most proba-
ble classes of the image along with their confidence scores.
Face++ is marketed as“face recognition in the cloud.” Users
have no access to the internals of the training process and
the model used, nor even to a precise explanation of the
meaning of the confidence scores. Face++ is rate-limited to
50,000 free queries per month per user.
To train the Face++ model, we used the same training

data used for DNNB in Sec. 4.1 to create a 10-class FRS.

6.2 Impersonation Attacks on Face++
The goal of our black-box attack is for an adversary to

alter an image to which she has access so that it is mis-
classified. We attempted dodging attacks with randomly
colored glasses and found that it worked immediately for
several images. Therefore, in this section we focus on the
problem of impersonation from a given source to a target .
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FRS that is widely used by applications for facial recog-
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an FRS that can be queried by applications. Given an im-
age, the output from Face++ is the top three most proba-
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Face++ is marketed as“face recognition in the cloud.” Users
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The goal of our black-box attack is for an adversary to

alter an image to which she has access so that it is mis-
classified. We attempted dodging attacks with randomly
colored glasses and found that it worked immediately for
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Figure 1: An image recovered using a new model in-
version attack (left) and a training set image of the
victim (right). The attacker is given only the per-
son’s name and access to a facial recognition system
that returns a class confidence score.

Consider a model defining a function f that takes input a
feature vector x1, . . . ,xd for some feature dimension d and
outputs a prediction y = f(x1, . . . ,xd). In the model in-
version attack of Fredrikson et al. [13], an adversarial client
uses black-box access to f to infer a sensitive feature, say
x1, given some knowledge about the other features and the
dependent value y, error statistics regarding the model, and
marginal priors for individual variables. Their algorithm is
a maximum a posteriori (MAP) estimator that picks the
value for x1 which maximizes the probability of having ob-
served the known values (under some seemingly reasonable
independence assumptions). To do so, however, requires
computing f(x1, . . . ,xd) for every possible value of x1 (and
any other unknown features). This limits its applicability
to settings where x1 takes on only a limited set of possible
values.
Our first contribution is evaluating their MAP estima-

tor in a new context. We perform a case study showing
that it provides only limited e↵ectiveness in estimating sen-
sitive features (marital infidelity and pornographic viewing
habits) in decision-tree models currently hosted on BigML’s
model gallery [4]. In particular the false positive rate is too
high: our experiments show that the Fredrikson et al. algo-
rithm would incorrectly conclude, for example, that a per-
son (known to be in the training set) watched pornographic
videos in the past year almost 60% of the time. This might
suggest that inversion is not a significant risk, but in fact we
show new attacks that can significantly improve inversion
e�cacy.

White-box decision tree attacks. Investigating the ac-
tual data available via the BigML service APIs, one sees that
model descriptions include more information than leveraged
in the black-box attack. In particular, they provide the
count of instances from the training set that match each
path in the decision tree. Dividing by the total number of
instances gives a confidence in the classification. While a
priori this additional information may seem innocuous, we
show that it can in fact be exploited.
We give a new MAP estimator that uses the confidence

information in the white-box setting to infer sensitive in-
formation with no false positives when tested against two
di↵erent BigML decision tree models. This high precision
holds for target subjects who are known to be in the training
data, while the estimator’s precision is significantly worse
for those not in the training data set. This demonstrates
that publishing these models poses a privacy risk for those
contributing to the training data.

Our new estimator, as well as the Fredrikson et al. one,
query or run predictions a number of times that is linear
in the number of possible values of the target sensitive fea-
ture(s). Thus they do not extend to settings where features
have exponentially large domains, or when we want to invert
a large number of features from small domains.

Extracting faces from neural networks. An example
of a tricky setting with large-dimension, large-domain data
is facial recognition: features are vectors of floating-point
pixel data. In theory, a solution to this large-domain in-
version problem might enable, for example, an attacker to
use a facial recognition API to recover an image of a person
given just their name (the class label). Of course this would
seem impossible in the black-box setting if the API returns
answers to queries that are just a class label. Inspecting fa-
cial recognition APIs, it turns out that it is common to give
floating-point confidence measures along with the class label
(person’s name). This enables us to craft attacks that cast
the inversion task as an optimization problem: find the input

that maximizes the returned confidence, subject to the clas-

sification also matching the target. We give an algorithm for
solving this problem that uses gradient descent along with
modifications specific to this domain. It is e�cient, despite
the exponentially large search space: reconstruction com-
pletes in as few as 1.4 seconds in many cases, and in 10–20
minutes for more complex models in the white-box setting.
We apply this attack to a number of typical neural network-

style facial recognition algorithms, including a softmax clas-
sifier, a multilayer perceptron, and a stacked denoising auto-
encoder. As can be seen in Figure 1, the recovered image
is not perfect. To quantify e�cacy, we perform experiments
using Amazon’s Mechanical Turk to see if humans can use
the recovered image to correctly pick the target person out of
a line up. Skilled humans (defined in Section 5) can correctly
do so for the softmax classifier with close to 95% accuracy
(average performance across all workers is above 80%). The
results are worse for the other two algorithms, but still beat
random guessing by a large amount. We also investigate re-
lated attacks in the facial recognition setting, such as using
model inversion to help identify a person given a blurred-out
picture of their face.

Countermeasures. We provide a preliminary exploration
of countermeasures. We show empirically that simple mech-
anisms including taking sensitive features into account while
using training decision trees and rounding reported confi-
dence values can drastically reduce the e↵ectiveness of our
attacks. We have not yet evaluated whether MI attacks
might be adapted to these countermeasures, and this sug-
gests the need for future research on MI-resistant ML.

Summary. We explore privacy issues in ML APIs, showing
that confidence information can be exploited by adversar-
ial clients in order to mount model inversion attacks. We
provide new model inversion algorithms that can be used
to infer sensitive features from decision trees hosted on ML
services, or to extract images of training subjects from facial
recognition models. We evaluate these attacks on real data,
and show that models trained over datasets involving survey
respondents pose significant risks to feature confidentiality,
and that recognizable images of people’s faces can be ex-
tracted from facial recognition models. We evaluate prelim-
inary countermeasures that mitigate the attacks we develop,
and might help prevent future attacks.

Atari Breakout

Nolan Bushnell, Steve Wozniak, Steve Bristow

Inspired by Atari Pong

"A lot of features of the Apple II went in 
because I had designed Breakout for Atari” 

(The Woz)

Game
• Bouncing ball + rows of bricks
• Manipulate paddle (left, right)
• Reward for eliminating each brick
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Securing AI 1. Leverage trusted AI by evaluating vendor policies 
and practices.

2. Enable secure access to users, models and data. 

3. Safeguard AI models, data, and infrastructure from 
adversarial attacks.

4. Implement data privacy protection in the training, 
testing & operations phases.

5. Conduct threat modeling and secure coding 
practices into the AI dev lifecycle.

6. Perform threat detection & response for AI 
applications and infrastructure.

7. Assess and decide AI maturity through the IBM AI 
framework.

9© 2023 IBM Corporation

OWASP Top 10 for Large Language 
Model Applications 



AI for Security Use Cases
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AI + Human for security operations 

IBM Security

Identify 
Automatically scan 
your attack surface 
for hidden assets, 
vulnerable systems 
and exploitable 
misconfigurations

Protect 
Take automated 
action like your 
analysts would, 
through ML-
powered protection

Investigate 
Automatically 
investigate cases 
that warrant it, with 
data mining, risk 
assessment, and 
timeline generation

Detect 
Assess the risk of 
threats in real-time 
using AI models to 
recognize and 
categorize deviations
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Triage
React faster 
to urgent 
incidents 
using alert 
severity scoring 
powered by ML

Respond
Dynamically 
create playbooks 
in incident 
response that 
adapt to threat 
context

Exposure 
Management

EDR Investigation and
Threat Hunting

ResponseSIEM SOC Workflow

Traditional use of machine learning Increasing use of Generative AI



AI for Security
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Organizations with extensive use of 
security AI and automation 
identified and contained a data 
breach 108 days faster than 
organizations with no use.

108 days

Cost of a Data 
Beach Report 
2023



In Summary

13

AI in Security brings speed and efficiency so we can…
Proactively Protect, Accurately Detect and Respond Faster

… with lower costs & complexity

…Built on a strong foundation of security and trust..
But this must be….
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